Combustion Reactions

Essential Standard:

I can use mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reaction.NGSS HS-PS1-7

Learning Targets:

- **#1-2** Chemistry involves chemicals that undergo chemical reactions:
 - « I can predict the products and balance a combustion of an organic compounds.
 - « I can differentiate between incomplete and complete combustion.

http://phet.colorado.edu/en/simulation/balancing-chemical-equations

Learning Target: I can differentiate a complete and incomplete combustion reaction

Combustion reactions

two types

Complete combustion:

(excess oxygen)

$$C_xH_yO_z + O_2 \longrightarrow CO_2 + H_2O$$

Incomplete combustion

(not enough oxygen)

$$C_xH_yO_z + O_2 \longrightarrow CO + H_2O$$

deadly carbon monoxide!!

Learning Target: I can balance a combustion reaction

Practice:

 add or change coefficients only (not formulas, not subscripts)

Write the equation and draw the molecules $CH_4 + O_2 \longrightarrow CO_2 + H_2O$ $CH_4 + O_0 \longrightarrow CO_2 + H_0H$

Learning Target: I can balance a combustion reaction

Balancing combustion reaction tips

- 1. Best order: C,H,O
- 2. Look for oxygen everywhere. Save O₂ for last.
- 3. Odd/even oxygen rule: double everything, then adjust O₂
- 4. Always recheck your work

$$C_4H_8 + O_2 \longrightarrow CO_2 + H_2O$$

$$C_2H_2 + O_2 \longrightarrow CO_2 + H_2O$$

$$C_2H_5OH + O_2 \longrightarrow CO_2 + H_2O$$

watch.webloc